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Dynamic fracture in a discrete model of a brittle elastic solid

Teresa Martı´n, Pep Espan˜ol, Miguel A. Rubio, and Ignacio Zu´ñiga
Departamento de Fı´sica Fundamental, Universidad Nacional de Educacio´n a Distancia, C/Senda del Rey s/n,

E-28040 Madrid, Spain
~Received 28 July 1999!

Dynamic fracture of brittle materials is studied by means of a molecular dynamics simulation of a two-
dimensional~2D! lattice of point particles. By a particular discretization of the continuum equations of elas-
ticity, we derive the Born model in such a way that the model parameters are related to the material properties.
Numerical simulations are performed, which show a branching instability, under Mode I loading, occurring at
a critical crack tip speed.The analysis of the dynamical stress tensor field near the tip shows a qualitative
similarity to Yoffe’s stress field.

PACS number~s!: 62.20.Mk, 46.50.1a, 02.70.Ns, 81.40.Np
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I. INTRODUCTION

The understanding of how solid materials break ap
when external loads are applied is a crucial safety issue
has attracted the attention of engineers and material scien
for a long time@1#. Quite recently, it has also attracted th
attention of physicists, as the complex spatio-temporal
namics of crack propagation has strong resemblance
other pattern-forming systems and models such as diffu
limited aggregation, dielectric breakdown, or percolation@2#.

Different mechanisms of fracture arise depending on
nature of the material. Brittle materials behave as linear e
tic solids until a breaking threshold is attained. Ductile m
terials, on the other hand, display plastic deformations
dislocation motion plays an important role in the dynam
of fracture. Recent well controlled experiments of cra
propagation have been conducted in materials such
PMMA or soda lime glass, which have raised considera
interest in brittle materials@3–7#.

According to the theory of linear elasticity of brittle ma
terials, the maximum crack speed should be the Rayle
wave speedVR @1#. More precisely, the dynamics of a prop
gating crack along a prescribed straight path can be solve
one assumes that the energy release rate is constant. In
case, the limiting velocity is the Rayleigh wave speed. Ho
ever, the phenomenology of crack propagation in brittle m
terials is more complex. Experimental observations
PMMA show that there are no cracks propagating at spe
lower than'0.18VR or higher than'0.7VR @3,6#. More-
over, when the crack speed exceeds a critical value aro
'0.4VR , oscillations on the measured tip velocity appe
@3#, acoustic emission is important@4,6#, and surface rough
ness appears@3,6#. Several different mechanisms such as d
sipation@8#, wavy motion@9#, or crack branching@5,10# have
been proposed to explain this phenomenology.

The theoretical analysis of the dynamic fracture prese
difficulties that have allowed for the achievement of on
some partial solutions in very simplified situations. T
strong nonlinearities of the problem that arise from the c
pling between the linear equations of elasticity and the co
plex boundary conditions due to creation of new surface
the crack propagates make the problem quite intractable,
ticularly when branching occurs. In this context, numeri
PRE 611063-651X/2000/61~6!/6120~12!/$15.00
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simulations appear to be an adequate route to gain s
insight into the complexities of the crack evolution. Esse
tially three main types of numerical simulations have be
followed. From a microscopic point of view one can treat t
material as composed by atoms, usually in a crystal,
study the evolution of the system when imposed loads
present. This approach was pioneered by Ashurst
Hoover @11# who showed how molecular dynamics simul
tions could be applied to the study of elasticity problem
Recently, large scale molecular dynamics simulations
two-dimensional~2D! triangular lattices of particles interac
ing with conservative potentials have provided detailed
formation about fracture instabilities, crack branching, a
dislocation emission@12#. Common features of these micro
scopic simulations are the anisotropy of the crystal, the p
ence of complex atomic rearrangements at the crack tip,
the emission of dislocations. These features of plastic c
talline materials can only help us to understand some qu
tative features of the experiments conducted on an am
phous polymeric solid like PMMA.

A second approach has been the study of finite lattic
usually triangular ones, with particular laws of force betwe
the points of the lattice and a critical threshold of rupture
bonds@10,13#. These lattices can be understood as model
brittle fracture without the effects of dislocations. The adva
tage of this approach is that sometimes analytical soluti
are available with which we can make comparisons. It
seen that the lattice has strong effects on the dynamics o
crack, giving rise to phenomena like lattice trapping, or t
existence of forbidden steady state crack velocities.

Finally, a third approach to the numerical study of d
namic fracture is that of finite elements. Recently, Xu, a
Needelman@14# have considered this technique with a co
tinuum model for a rather complex isotropic hyperelas
solid with potential surfaces of decohesion intersper
throughout the material. Crack branching and the dep
dence of crack velocity with impact velocity are observ
features of the simulation.

The picture that emerges from these three approache
that the spatio temporal dynamics of a fracture model
pends on the combination of three main ingredients:
force law, the fracture criterion, and the local geometry
the lattice or the space discretization. However, the influe
of fracture criterion and local lattice geometry close to the
on the dynamics is not well understood. A reasonable fi
6120 ©2000 The American Physical Society
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PRE 61 6121DYNAMIC FRACTURE IN A DISCRETE MODEL OF A . . .
step in this direction is the investigation of the fracture d
namics in a discrete model that would represent an ide
elastic brittle solid at large length scales. The behavior
such a model should mimic reasonably well the behavio
a brittle elastic solid, which is linearly elastic and isotropic
large length scales, and discrete at small length scales.

In this work we construct a discrete lattice model from t
continuum equations of elasticity that respects the prope
of isotropy and linear elasticity at large length scales. O
discretization procedure leads to a finite difference schem
a triangular lattice that appears in a tensorial form, thus
lowing for an interpretation of the nodes of the mesh
actual particles~rather as mesoscopic portions of materia!,
which interact with prescribed laws of force. The resulti
force law coincides with the Born model@15#, which has
been used extensively in studies of quasielastic and dyna
fracture @16#. Interestingly, our discretization scheme pr
vides for precise formulas relating the elastic constants in
Born model with the transverse and longitudinal wa
sounds speeds of the material. Moreover, the general
cretization scheme can also be implemented for different
tice geometries, as well as next nearest neighbor interac
or different constitutive equations.

The discrete equations of motion have been simulated
means of a conventional molecular dynamics algorithm@17#.
The model allows for the study ofdynamicfracture, in which
the crack speed is close to the Rayleigh wave speed. Th
at variance with studies of quasielastic fracture in which a
bond breaking the system is allowed to relax before a n
bond breaks@16#. In this sense, the model presented in t
paper can be understood as an extension of the prev
model for quasielastic fracture in Ref.@16# to the dynamical
regimes in which the crack speed is comparable to the so
speeds. In the present study we have implemented a d
ministic fracture criterion based on a given threshold def
mation, the usual brittle one in which a single bond brea
when a critical deformation is reached. Our aim here is
make a comparison with analytical results of dynamical fr
ture in linear elasticity as a first check of the model.
course, the implementation of a probabilistic fracture cri
rium as in Refs.@16# would take into account interestin
effects of disorder of finite temperature.

In this paper, we show that the expected linear ela
behavior is obtained for sound waves with waveleng
larger than seven lattice spacings. We present also nume
results on crack propagation under Mode I loading. T
loading level is controlled by cutting an initial notch with a
adjustable length. As the fracture criterion, we have taken
usual brittle one in which a single bond breaks when a c
cal deformation is reached. In the simulations the cra
moves in a straight line and accelerates until the tip reach
critical velocity Vc . The value ofVc appears to be indepen
dent of the loading level. When the crack tip reaches t
critical velocity, the crack branches into two macrosco
running cracks.

The existence of a critical crack tip velocity for macr
scopic branching suggests that perhaps mechanisms su
those proposed after Yoffe’s stress field solution@18,1,19#
might be in action. In order to assess whether one of th
mechanisms is operating in the discrete lattice, we have s
ied the azimuthal angle dependence of the stress field c
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to the tip. Although qualitative agreement is observed,
strong effects due to the local lattice geometry near the tip
not allow us to draw strong conclusions about the phys
mechanism involved.

The paper is organized as follows. In Sec. II, we pres
the model equations and discuss the implementation of
fracture criterion. Section III is devoted to the simulatio
results related to wave and crack propagation. In Sec. IV
show the results concerning the spatial structure of the st
field close to the tip making a comparison with the analyti
curves obtained in the Yoffe analysis. The discussion a
conclusions are presented in Sec. V. Details of the discr
zation scheme are given in the Appendix.

II. DISCRETE MODEL FROM ELASTICITY EQUATIONS

The linear equations of elasticity that govern the displa
ment field u(r ,t) in an homogeneous material subject
small deformations are@1#

ü~r ,t !5c'
2 ¹2u~r ,t !1~ci

22c'
2 !¹~¹•u!~r ,t !, ~1!

where the transversec' and longitudinalci sound speeds ar
material properties related to Young’s modulusE and Pois-
son’s coefficientn through

c'5S E

2r~11n! D
1/2

,

ci5S E~12n!

r~11n!~122n! D
1/2

. ~2!

Here,r is the mass density of the material. A third speed c
be defined in a material, that of the surface waves propa
ing on the free boundaries of the material. For the purpo
of this study, the surface Rayleigh wave speed may be
proximated by the expression@20#

VR'c'~0.87410.162n!. ~3!

We have discretized the elasticity equations~1! following
a general procedure that allows us to discretize partial dif
ential equations in an arbitrary lattice~including random
ones!. The procedure is constructed from the point of view
an optimization problem; full details are given in the Appe
dix. In this paper, we consider only triangular lattices f
which the expressions simplify considerably. As shown
the Appendix, the discrete equations corresponding to~1! are

üi~ t !5F c'
2 2ci

2/3

a2 G(
j 51

6

~uj2ui !

1
4~ci

22c'
2 !

3a2 (
j 51

6

~uj2ui !• r̂ j i
0 r̂ j i

0 , ~4!

where a is the lattice spacing andr̂ j i
0 is the underformed

lattice vector joining particlesj and i. These equations ar
second order ordinary differential equations that can be
terpreted as the equations of motion for a set of particles
unit mass in a lattice, interacting with its nearest neighb
with a linear law of force. The force has two components
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6122 PRE 61MARTÍN, ESPAÑOL, RUBIO, AND ZÚÑIGA
first one that represents a linear spring connecting the
ticles and a second one that is directed to the equilibr
positions of the particles~it is a sort of biased linear spring!.
The elastic constants of these two types of springs are g
in terms of the shear and sound speeds.

It is worth noting that the above discrete model coincid
with the Born model that has been used in several studie
quasistatic and dynamic crack propagation@16#. The Born
model is characterized by the following potential energy

V5
1

2
~a2b!(

i j
@~ui2uj !• r̂ j i

0 #21
1

2
b(

i j
@ui2uj #

2,

~5!

wherea,b are model constants that are tuned at will. T
force on particlei derived from this potential energy is

Fi5
]V

]ui
5~a2b!(

j
~uj2ui !• r̂ j i

0 r̂ j i
0 1b(

i j
~uj2ui !,

~6!

which coincides with the force in Eq.~4!. We have, there-
fore, provided a physical meaning to the model consta
a,b in terms of the sound speedsc' ,ci .

The physics encoded in the linear elasticity equation~1! is
quite simple: any perturbation of the displacement field c
be decomposed in terms of sound and shear waves,
propagating independently at its own speed. Despite
simplicity, the presence of nontrivial boundary conditio
make elasticity problems difficult to solve. The difficulty
even larger for fracture problems because the boundary
ditions are coupled with the dynamics of the fields. In ord
to specify this coupling it is necessary to formulate a fract
criterion that states when one fracture surface is created.
fracture criterion is, from a conceptual point of view, a
additional physical ingredient as important as the constitu
equation of the material.

Which is the best fracture criterion for ‘‘brittleness’’
This is not an easy question to answer from a continu
point of view. Different criteria lead to different dynamica
behavior. A usually chosen criteria is that stating that a sh
crack tip moves when the stress intensity factor overcom
some material dependent threshold. However, this is an
complete prescription because it does not specify thedirec-
tion of the propagating crack. Several further specificatio
must be made, for example, that the crack will move in
direction of the maximum circumferential stress@18#, or in
the direction of the eigenvector of smaller eigenvalue of
stress tensor@21#. See Ref.@19# for still another formulation
for a fracture criterion.

On a lattice model it seems natural to use as fract
criterion the simplest one based on the idea of brittle spri
that respond elastically until they break at a critical deform
tion. The physical picture in a real material is that two poin
representing portions of material that interact elastically w
stop interacting if they separate more than the ranger c of the
cohesive force. This is a simplistic picture of al the comp
physics of real materials but it provides a precise fract
criterion. Note that in a lattice it is not necessary to spec
the direction that the crack will follow. The mathematic
formation of this fracture criterion is as follows. Let us ta
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a pair of nodesi , j of the lattice and consider the displac
ment fieldui and uj in each node. The length of the bon
connectioni and j will be

dl25~uj2ui1r j i
0 !2

'@a12~uj2ui !•r j i
0 1~uj2ui !•~uj2ui !#. ~7!

If this length exceedsr c for some of the six neighborsj of i,
the bondi , j will break. This isdl2.r c

2 . For small deforma-
tions of the quadratic terms ar negligible and

dl'a@11~uj2ui !•r j i
0 #.r c . ~8!

This can be written as

~uj2ui !•r j i
0 .gc , ~9!

with the critical straingc5(r c2a)/a.
Equations~4! have been simulated with a convention

molecular dynamics code using Verlet’s algorithm~i.e., a
centered difference in time! @17#. This is an explicit method
in the language of finite differences simulations. If a partic
lar bond fulfills the condition~9! then we remove the particle
j from the Verlet’s neighbor list of particlei @17#. In this way
particlei andj are not considered neighbors any more and
longer interact. We preclude, thus, the possibility of surfa
recombination. Some trial runs were also performed allo
ing for surface recombination but no effects on the dynam
of the model were observed.

For latter reference, we present now the discrete exp
sions for the stress and strain tensors. The strain tens
defined in the continuum theory asg5 1

2 @¹u1¹uT#. By us-
ing the discretization of first derivatives presented in the A
pendix, we obtain the following expression for the stra
tensor defined at each node of the mesh,

g i5
1

6a (
j

~ui2uj ! r̂ j i
0 1 r̂ j i

0 ~ui2uj !. ~10!

The stress tensorsi at the nodei is given in terms of the
strain tensor according to@20#

s i5
E

11n S g i1
n

122n
tr g i1D , ~11!

and reciprocally

g i5
1

E
@~11n!si2n tr si1#. ~12!

One caveat is in order here: the discretization proced
has some merits, for instance, the applicability to proble
with different constitutive equations, different lattice geom
etries, and arbitrary number of neighbor interactions. Ho
ever, it does not guarantee that the particular simulat
scheme obtained in a given situation is stable. In fact,
simplest simulation scheme that we present here is unst
for n.0.25; this particular value of the Poisson coefficient
the one at which the coefficient of the linear spring force
Eq. ~4! changes sign. This problem is eliminated by recalc
lating the force law considering also next nearest neighb
interaction@22#.
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III. SIMULATION RESULTS: WAVE AND CRACK
PROPAGATION

A. Dispersion relations and isotropy

We have selected a Poisson number ofn50.2. We take as
units of space the lattice spacing and as units of velocity
Rayleigh wave speed (VR51). This sets the unit of time
The theoretical shear and longitudinal sound speeds are
Eqs.~2!, ~3!, c'51.10, andci51.79. Even though the origi
nal continuum model of linear elasticity~1! is dispersionless
the discretization always produces dispersion at small len
scales. In order to quantify this dispersion, we have indu
shear and longitudinal waves in a 2D lattice with period
boundary conditions in both directions and have checked
the speed of the waves depends on the wave number.
results are presented in Fig. 1. Four types of waves h
been induced in the plate: longitudinal waves with the wa
numberk parallel ~bullets! and perpendicular~diamonds! to
a lattice direction and transverse waves with the wave n
berk parallel~triangles! and perpendicular~open circles! to a
lattice direction. Nevertheless, forl.7 both longitudinal
and transverse waves withk parallel or perpendicular to lat
tice directions coincide perfectly with the corresponding co
tinuum values.

We observe that for wavelengths smaller thatl;7 the
longitudinal and transversal speeds of sound are smaller
the corresponding continuum values. In addition, we obse
that for these small wavelengths the lattice is not isotropic
transverse wave moves faster in the directions of the lat
vectors than in the directions perpendicular to the lattice v
tors. This anisotropy effect is not so pronounced for longi
dinal waves.

B. Crack propagation

We have studied Mode I fracture of finite 2D rectangu
plates of dimensionsLx3Ly that contain an initial sharp
notch of lengthLn . The notch is located in the middle of th
plate and is made by cutting the transversal bonds on
central column starting from the upper boundary~see Fig. 2!.

FIG. 1. Dispersion relations: The speed of propagation o
wave ~in units of the Rayleigh wave speed! as a function of the
wavelengthl ~in units of the lattice spacinga). ci for longitudinal
waves with the wave numberk parallel (d) and perpendicular (L)
to a lattice direction andc' for transverse waves with the wav
numberk parallel (n) and perpendicular (s) to a lattice direction.
Solid lines are the continuum valuesc'51.10 andci51.79.
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Typical plates of 80.000 particles are studied. The plate
subject to a Mode I deformation by displacing the partic
of the right wall a fixed distanceDLx in thex direction. The
plate is left to equilibrate until the stationary stress field c
responding to the given geometry is reached. A damp
force is applied to each particle during this equilibration tim
in order to speed up the equilibration and get rid of the tr
eling waves due to the application of the deformation. T
equilibration time is several times that required by sou
waves to travel the sample. In this way, we are starting
simulation with all particles at rest and, effectively, repr
ducing the experimental conditions of quasielastic load
before fracture initiation.

In principle, two different types of numerical simulation
can be performed, at a given critical straingc or at a given
nominal deformatione, wheree5DLx /Lx . In the first case
~critical strain gc fixed!, we have to compute the nomina
deformation ec at which fracture occurs. This can b
achieved easily by means of a previous run in which
equilibrium maximum strainḡ in the notched plate is ob
tained for a given deformationē. Becauseḡ5aē, wherea

is a coefficient of proportionality, we haveec5 ēgc /ḡ @23#.
We note that for critical strain fixed, by increasing the nu
ber of nodes we are increasing thesizeof plates of the same
material. The reason is that by fixing the critical straingc
one is fixing a length scaler c .

The second kind of experiment that can be performed i
a given nominal deformatione. In this case, we have to
adjust the critical strain by computing the deformation of t
most stretched bond and the next most stretched bond
selecting the average value between these two deforma
we make sure that at the beginning of the dynamical run o
the most stretched bond will break, thus triggering the pro
gation of the crack. The simulations that will be presen
are performed with this second kind of experiment, with
given nominal deformation ofe50.01. Note that at fixed
nominal deformation, by increasing the number of nodes
the plate we are increasing theresolutionof the plate. The
idea is that if plates of equal geometry but different numb
of nodes all break at the same nominal deformation they
correspond to different representations of the same plat
the same material.

a

FIG. 2. Triangular lattice with a lattice direction along the ve
tical y direction. In this small lattice considered for illustration,
notch ofLn58 is made by cutting transversal bonds at the mid
of the plate. The lattice is stressed by producing a displacem
DLx of the right vertical boundary.Lx and Ly are in units of the
lattice spacing.
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We have conducted a series of simulations in which
effect of the notch length on the dynamics of crack propa
tion is studied systematically. The notch length determi
the level of stress of the landscape on which the crack pro
gates and it is usually the way in which this effect is inve
tigated experimentally~also the shape of the notch is releva
experimentally!. Plates with long notches require small
levels of deformation to break. In Ref.@24# we studied the
effect of notch length on crack fracture of an anisotro
model and a full discussion of the dependence of the m
mum stress in the plate as a function of notch length w
presented.

In Fig. 3 we show a plate in which the lattice is orient
with a lattice direction along the vertical. In this casen
50.25 and the initial notch has a length ofl n560. The plate
is let to equilibrate without breaking until a static state
reached. At that point the breaking strain thresholdgc is
adjusted just below the deformation of the most stretc
bond. A crack is initiated and it propagates in a straight l
along the vertical lattice direction. The crack branches a
given time in two cracks and the subsequent motion is
regular with several attempted branching. We plot in Fig.
record of all the broken bonds of the plate until a given tim
It should be noted that the main branches do not follow
lattice directions in the major part of their development.

In order to study the velocity of the crack tip, we defin
the position of the tip as the middlepoint of the most a
vanced breaking bond. The tip velocity is calculated by
viding the y coordinate difference by the time interval
between the last two most advanced broken bonds. This
nition is the closest to the experimental measurement of
crack tip velocity@3,6#, which basically measures the resi
tance of the metallic strip in between the most advan
crack tip and the free border of the breaking plate. The ti
history of the velocity for the crack tip in Fig. 3 is shown
Fig. 4. The crack starts moving at a finite velocity ('0.6),
which is different from zero due to the essential discrete w
of computing the velocity. At short times (t,10) the crack
propagates in a straight line and small oscillations of the
velocity occur. These velocity oscillations disappear at

FIG. 3. Record of all broken bonds in a plate. Both axes are
units of the lattice spacinga. Dotted straight lines are two lattic
directions to guide the eye~the third lattice direction is vertical!.
Vertical slashed line is the initial notch withl n560. Lx andLy are
in units of the lattice spacing.
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;10; from then on the crack propagation is still straight a
the tip velocity grows in a rather linear way untilt;25 when
branching starts. Before branching occurs, the acceleratio
the crack tip decreases as the notch length decreases, i.
the stress level is higher.

Once branching has started very strong tip velocity flu
tuations are observed. These wild fluctuations are cause
the branching process in which the most advanced bro
bond can belong to different branches at different times.
instance, tip velocities higher than unity appearing in Fig
correspond to one branch surpassing another, with a s
time interval in between the breaking of the most advan
bonds of both branches.

The main observation here is that branching occurs at
same value of tip velocity irrespective of notch length, i.
there is a well defined critical tip speed for branching
happen, within the simulation error. This is shown in Fig.
where the velocity of the crack tip at the branching point
represented as a function of the notch length. For all ca
branching occurs when the crack tip reaches the critical
locity Vc50.7160.01.

Recently, it has been proposed that in experiments
Mode I fracture in PMMA@7#, the branching instability is

n
FIG. 4. Crack tip velocity~in units of the Rayleigh wave speed!

as a function of time~in units ofa/vR). The strong oscillations are
due to the branching.

FIG. 5. The velocity of the crack~in units of the Rayleigh wave
speed! at the moment of branching for each notch length~in units of
the lattice spacinga). The dotted line is the average valueVc

50.71.
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triggered by the reflection against the boundaries of so
waves generated during the cracking process. This is no
in the present simulations, because here the crack tip spe
higher than in the referred experiments and therefore bra
ing occurs always at a time smaller than that required by
longitudinal waves to travel back and forth to the near
boundary.

IV. SIMULATION RESULTS: STRUCTURE
OF THE STRESS FIELD

The existence of a critical branching velocity and its p
ticular value in a model that represents well a linear ela
solid at large length scales calls for a comparison with
stress field derived by Yoffe@18#. In any case the compari
son should be taken with some care because Yoffe’s solu
is valid asymptotically close to the tip and, due to the d
crete nature of the model, the isotropy and linear elasticity
the continuum equations are not preserved at small len
scales. We will first succinctly review the main results f
the asymptotic fields near a moving crack tip in Mode
loading.

A. Yoffe’s stress field

The results given by Yoffe correspond to a crack mov
at constant velocity through an infinite plate. Even thou
the original derivation of Yoffe was made considering crac
moving at constant speed, it is possible to prove that fo
linear crack at arbitrary speed, the stress field asymptotic
near the tip of the crack has the following form~using polar
coordinates as in Fig. 6! @1#:

s~r ,u,v,t !5
K1~ t !

A2pr
S I~u,v !. ~13!

Here, the dimensionless angular functionsS i j in Cartesian
coordinates, with thex axis in the direction of propagation o
the crack, are given by@1#

Sxx
I 5

1

D H ~11as
2!~112ad

22as
2!

cos1
2 ud

Agd

24asad

cos1
2 us

Ags
J ,

Sxy
I 5

2ad~11as
2!

D S sin 1
2 ud

Agd

2
sin 1

2 us

Ags
D , ~14!

FIG. 6. Polar coordinates with respect to the crack tip. So
vertical line is the crack.
d
so

is
h-
e
t

-
ic
e

n
-
f
th

I

h
s
a
lly

Syy
I 52

1

D H ~11as
2!2

cos1
2 ud

Agd

24asad

cos1
2 us

Ags
J ,

with

ad5A12~v/cd!2,

as5A12~v/cs!
2,

gd5A12~v sinu/cd!2,

gs5A12~v/ sinu/cs!
2,

tanud5ad tanu,

tanus5as tanu,

D54asad2~11as
2!2. ~15!

The Rayleigh wave speed is the nonzero real root ofD(v).
The stress in polar coordinates is given by

s rr 5sxx cos2u1sxy sin 2u1syy sin2u,

s ru5~syy2sxx!sin 2u1sxy cos 2u,

suu5sxx sin2u2sxy sin 2u1syy cos2u. ~16!

These expressions allow us also to compute the co
sponding strain fieldsg(r ,u,v,t) and G I(u,v) through Eq.
~12!. The circumferential tensile stresssuu ~also called hoop
stress! has an interesting behavior as a function of the vel
ity of the crack. For crack speeds less than about 60 m
mum value ofsuu appears atu50. As speed increases, th
hoop stress develops a maximum in a direction inclined a
angle from the direction of crack growth different from zer
Yoffe suggested that this inertia induced modification of t
local singular stress field could make the crack bifurcate i
several branched cracks. In Fig. 7 we plot the angles
which suu and guu have their maxima as a function of th
velocity of the crack. The angles at which the maxima app
increase monotonically from zero to a value beyond 60°
the velocity increases provided that some critical value of
velocity are exceeded. These critical values for the ho
strain and stress are 0.659 and 0.688, respectively. Moreo
above the critical values,umax behaves as the square root
the relative difference between the tip speed and the co
sponding critical velocity.

B. Simulation stress field: static crack

We will first consider the structure of the static stress fie
prior to crack evolution in a plate with a long initial notch
Keeping in mind that Yoffe’s expressions are asympto
fields valid close to the crack tip we need to know the str
tensor obtained from the simulations on a circle of a sm
radius centered at the crack tip. Information on the radius
the circle can be gained by looking for the expectedr 21/2

behavior for values ofu close to zero. In Fig. 8 we show th
dependence ofsuu on r calculated at the lattice nodes lo
cated in the two vertical lines at both sides ahead of the cr
tip.
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It can be seen that within a distance to the tip of th
lattice spacings the stresses obtained in the simulation a
reasonably well with the expectedr 21/2 dependence. Beyon
this distance to the crack tip, the stresses decay some
slower thatr 21/2. Therefore, it seems reasonable to take
circle of radius three lattice spacings in order to study
structure of the stress field close to the tip. Unfortunate
because of the discrete nature of the system, the numb
lattice nodes within that circle of radiusR53 is small.

In the following we will represent the azimuthal depe
dence of the stress field obtained in the simulations at th
lattice nodes that are located within a circle ofR53, and the
corresponding values at the same points obtained through

FIG. 7. Angle ~in degrees! at which Suu ~thin line! and Guu

~thick line! have their maxima, as a function of the crack veloc
~in units of the Rayleigh wave speed!. The Poisson coefficient is
n50.25.

FIG. 8. Dependence ofsuu on r for the lattice nodes in the
columns at right and left from the straight propagating crack. D
monds correspond to Yoffe’s stress field and crosses to simula
results. The simulation results here have been shifted by a mult
cative factor.
e
ee
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expressions~14! and ~16!. The values ofsuu obtained from
the simulations have been multiplied byAr , and divided by
the value atu50, in order to compare with the theoretic
expressions forSuu computed at the same lattice nodes. A
the following data correspond to a plate withLx5173.2,
Ly5399.5, and notch lengthLn5195, which is allowed to
relax without breaking until a static configuration is reache
This notch length ensures that the crack tip is not affected
the upper and lower boundaries. The stress field around
tip will be, therefore, similar to the infinite strip case@25#. In
Fig. 9 we plotArsuu against the angleu for this static con-
figuration. Diamonds correspond to the simulation points a
solid line is the Yoffe’s field forv50.

A nice overall agreement between the simulation and t
oretical results is observed. However, there are some s
differences that can be attributed to several causes. First,
observes that the simulation results are distributed in a
rower curve aroundu50 than the theoretical ones. Th
might be due to the finite dimensions of the plate; from t
map of isolines of stress~normalized with the strip width! in
@25# one concludes that the angular distribution of stresse
more localized aroundu50 for a strip of finite width than
for a ‘‘strip’’ of infinite width. Second, the nonsmooth ap
pearance of the points~see, for instance, atu5260°) is a
systematic lattice effect that will be discussed below. Fina
the crack tip location is subject to certain ambiguity. T
most natural way to define the location of the crack tip a
pears to be the middle point of the breaking bond at the t
the bond breaks; but positions slightly more advanced
retarded might be arguable too. However, we have chec
that considering these more advanced or retarded posit
for the crack tip merely changes the azimuthal depende
shown in Fig. 9 in a geometrical way, i.e., the azimuth
angles corresponding to the different lattice nodes chang
changing the position of the origin of the polar coordina
system located at the crack tip.

C. Simulation stress field: moving crack

We have analyzed the stress field of moving cracks
times long enough that the initial oscillations have decay

-
on
li-

FIG. 9. Plot ofArsuu ~normalized with its value at the angl
closest tou50) against the angleu ~in degrees! for a static crack.
Solid line corresponds to the theoretical expression and diamo
are the simulation results.
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and the crack is moving with low acceleration, up to tim
immediately before branching occurs. In the following t
stress fields are represented at times coinciding with
breaking of a bond.

First of all, let us point out that the effects of the lattic
asymmetry close to the tip are stronger in the case of a m
ing crack. In Figs. 10 and 11 the hoop stress is shown
different times~and, therefore, at different crack tip veloc
ties! before branching, plotted against angleu, as well as the
corresponding theoretical values for the same tip velocit
For this particular plate and notch length, the time at wh
the crack branches is 35.93.

Figures 10~a! and 10~b! correspond to timest519.17 and
t535.22, respectively, at both of which the correspond
breaking bond has an inclination ofu560°; the respective
tip speeds are 0.66 and 0.70. Conversely, Figs. 11~a! and
11~b! correspond to timest519.93 andt535.93, respec-
tively, at both of which the corresponding breaking bond h
an inclination ofu5260°; the respective tip speeds are 0.
and 0.71.

FIG. 10. Plot of the hoop stresssuu ~normalized with the value
closest tou50) against angleu ~in degrees! from the direction of
crack growth at times~a! t519.17 and~b! t535.22. solid line is the
asymptotic field and diamonds represent the simulation results
s

e

v-
at

s.
h

g

s

A detailed comparison between Figs. 10 and 11 sho
that when the breaking bonds have the same orientation
hoop stresses have very similar structures at different tim
More strikingly, it can be observed that Fig. 10~a! and Fig.
11~a! are specular images of each other with respect tou
50 @the same applies to Figs. 10~b! and 11~b!#. This com-
parison clearly shows that the lattice has a strong influe
on the stress field near the crack tip and that this influenc
systematic.

Figures 10~b! and 11~b!, which correspond to tip spee
values higher than the critical values of Fig. 7, show that
theoretical hoop stress has already a maximum atuÞ0.
However, in the simulation results, the strong lattice infl
ence forbids an interpretation of the branching as caused
the existence of maxima in the hoop stress atuÞ0. Actually,
it can be seen that there are two nodes~the nearest to the
crack tip! at angles 60° and230° at which the value ofsuu
is larger than the value at angles close to 0°. The appear
of these maxima at nodes close to the tip might be due to
method used for computing the stress field through Eqs.~10!,

FIG. 11. Plot of the hoop stresssuu ~normalized with the value
closest tou50) against angleu ~in degrees! from the direction of
crack growth at times~a! t519.93 and~b! t535.93. Solid line is
the asymptotic field and diamonds represent the simulation res
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~11!, which is, essentially, the finite difference calculatio
Very close to the crack tip, where there are very strong va
tions of the displacement field, this finite difference calcu
tion might give a poor approximation to the stress field.

A surprising fact is that the effects of the lattice structu
appear to be mainly multiplicative, and so they may
strongly reduced by dividing the stress fields at differe
times provided that the orientation of the breaking bond
the same. In Fig. 12 we show the ratio between the st
fields in Figs. 10~a! and 10~b!. The solid line is the quotien
between the analytical results, whereas the diamonds co
spond to the ratio between the simulation results; angles
side the range (2100,100) have not been represented;
cause of the stress values in the denominator being sma
large values of the quotient are obtained. We observe
this procedure practically eliminates the systematic lat
effects and also shows a striking coincidence between th
and simulations. The same procedure has been carried o
Fig. 13 where the quotient between data in Figs. 11~a! and
11~b! is presented.

These results suggest that in spite of the strong lat
effects that occur near the crack tip, the azimuthal dep
dence of the hoop stress that is observed in the simulat
captures many of the features of Yoffe’s stress field.

V. DISCUSSION AND CONCLUSIONS

Our aim in this paper has been to define from a numer
point of view a model that represents brittle linear elastic
The approach we follow is a discretization of the continuu
equations in a way that the nodes of the grid can be in
preted as actual ‘‘particles’’ or portions of material. The r
sulting algorithm can be interpreted then as a molecular
namics algorithm instead of a finite difference algorithm
much the same spirit as smoothed particle applied mecha
@26#. Actually, the model obtained is essentially the Bo
model, with the bonus that the constants appearing in
model are explicitly related to the material properties ch

FIG. 12. Theoretical~solid line! and simulation results~dia-
monds! for the ratio between the hoop stress for timest519.17 and
t535.22 corresponding to Figs. 10~a! and 10~b! ~angle u in de-
grees!.
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acterized by the two speeds of sound of the elastic mate
We have studied the elastic properties of the model

means of the sound propagation. In the discrete model,
isotropy of the continuum equations and the proper value
the longitudinal and transverse wave speeds are recov
for perturbations with wavelengths typically above an ord
of magnitude larger than the lattice spacing.

The fracture criterion we have selected is extremely lo
~a single bond breaks at a time! and this, as far as compar
sons with continuum theory are concerned, might be too s
plistic. The idea is that local criteria, in which a single bo
breaks at a time, must necessarily be subject to the lo
topology of the lattice. If the lattice is sought as a discre
zation of the continuum, one would expect that the latt
spacing should be much smaller than any other relev
length scale in the system~at least by a factor of 10!. If the
simplistic view of ‘‘grains’’ that break apart is taken, it i
apparent that in an event of separation of grains, many lat
points would break at a time. In any case, it seems interes
to study new models with nonlocal criteria of fracture
which the decision to break a bond is taken from the dyna
cal state of many neighboring particles and not only from
couple that forms the bond.

Regarding the phenomenology of crack propagation,
have observed that fractures propagating in this model do
necessarily follow the lattice directions. There are, howev
some effects of the lattice in the propagation of the crac
Sometimes a dynamical trapping forces the crack to foll
prescribed lattice directions. The origin of this lattice tra
ping effect might be attributed to the local criteria of fractu
that we have selected.

We have seen that all cracks in this model of brittle line
elasticity accelerate and display branching when the crack
speed exceeds a critical velocity ofc* 50.7VR for the Pois-
son ratio here considered. This critical value does not dep
on the notch length and is close to the one obtained fr
Yoffe’s hoop stress@18,1#. After the cracks branch, larg
fluctuations of the crack speed appear. These fluctuations

FIG. 13. Theoretical~solid line! and simulation results~dia-
monds! for the ratio between the hoop stress for timest519.93 and
t535.93 corresponding to Figs. 11~a! and 11~b! ~angle u in de-
grees!.
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very similar to the ones observed in experiments where
tip velocity is monitored by means of the resistance o
conductive thin film deposited on one of the faces of the
plate. According to our simulations, these fluctuations mi
be interpreted as an artifact of the measurement method
does not distinguish between simultaneously runn
branches of the same crack.

Even though a direct comparison between the theore
stress field and the simulation results is difficult due to stro
lattice effects, we have shown that these effects are to a l
extent systematic. Its basic origin is due to anisotropy
duced by the particular orientation of the breaking bond.
this way, we observe in the simulations that the stress fi
near the tip of the crack ‘‘alternates’’ between two almo
mirror symmetric configurations as the crack snaps bond
different orientations as it proceeds. It is remarkable t
when this effect is removed from the representation of
stress fields by taking appropriate ratios at different tim
the similarity with the theoretical results is much increas
It is tempting to speculate that this alternating configurat
of the breaking bonds might introduce a component of Mo
II loading close to the tip. Work to analyze this possibility
connection with the branching explanation given in@27# is in
progress.

Even though from a qualitative point of view crac
branching due to the Yoffe instability is an explanation f
the observed low crack speed, it still does not explainquan-
titatively the experimental results. In fact, experiments sh
that there exist a critical crack speed above which the cr
evolution is unstable~it oscillates, emits sound, and it micro
branches!. The typical value for this critical crack speed
significantly lower than that predicted by the Yoffe instab
ity. Therefore, it is still an open question as to what are
essential ingredients that a model of brittle fracture sho
have in order to reproduce the experimental results.

Summarizing, we have investigated in this paper a sim
model of linear elasticity with a local threshold criterion
fracture. It might be necessary to resort to more comp
constitutive equations that can equally be treated with
general discretization method proposed in this paper
seems also necessary to consider new criteria of fract
which model in a more realistic way the complex physic th
occur in the crack tip. From a computational point of vie
nonlocal criteria are needed if the effects of the lattice
required to be negligible.
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APPENDIX: DISCRETIZATION OF CONTINUUM
EQUATIONS

In this Appendix we formulate the problem of discretizin
the equations of elasticity on an arbitrary mesh as a prob
of optimization. The method presented in this Appendix
however, not restricted to the elasticity equations and can
applied to any set of partial differential equations.
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Let f (r ) be any scalar field inRD and consider a sampl
of M points distributed arbitrarily in the vicinity of a given
point r0 with positionsr j . The value of the scalar field a
those points is denoted byf j5 f (r j ). The question we an-
swer in this Appendix is, from our knowledge ofr i and f i ,
which is the best estimate for the first and second derivat
of f at the pointr0? This is a problem of optimization an
essentially the solution consists of finding the best para
loid that fits the points and contains the pointr0 , f 0 in RD11.
The equation of this paraboloid is

P~r !5 f 01A•~r2r0!1
1

2
B:~r2r0!~r2r0!. ~A1!

A Taylor expansion off (r ) aroundr0 shows thatA is an
approximation for the gradient off at r0 andB is an approxi-
mation for the matrix of second derivatives. We constru
then the optimization function

f~A,B![(
j

M

@P~r j !2 f j #
2

5(
j

M S f 02 f j1A•~r j2r0!

1
1

2
B:~r j2r0!~r j2r0! D 2

. ~A2!

By minimizing f with respect toA,B we will obtain the
paraboloid that best fits the pointsr i , f i ,

05
]f

]A
52F2F11r2•A1

1

2
r3 :BG ,

05
]f

]B
5F2F21r3•A1

1

2
r4 :BG , ~A3!

where we have defined

F1[(
j

M

~ f j2 f 0!~r j2r0!,

F2[(
j

M

~ f j2 f 0!~r j2r0!,~r j2r0!, ~A4!

which contain information about the function in the neig
borhood ofr0 and

R2[(
j

M

~r j2r0!~r j2r0!,

R3[(
j

M

~r j2r0!~r j2r0!~r j2r0!,

R4[(
j

M

~r j2r0!~r j2r0!~r j2r0!, ~A5!
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which contain the topological information. The subindic
on the F’s and R’s in ~A4!, ~A5! denote the order of the
tensorial quantity. The condition of minimum provides

R2•A1
1

2
R3 :B5F1 ,

R3•A1
1

2
R4 :B5F2 . ~A6!

This is a system of linear equations for theD1D(D11)/2
unknownsA,B ~note thatB is symmetric!.

If, instead of firstand second derivatives, only first de
rivatives were required, we would have started the prob
by fitting the bestplane ~instead of paraboloid!. This corre-
sponds to the above formulas withB50. One could think
that, then, second derivatives could be obtained by suc
sive application of the formulas for the first derivative
However, this has the drawback of bringing the neighbors
the neighbors of a given point into the expressions. This
general produces less accurate expressions for the de
tives. One can get a glimpse of this point by considering
one-dimensional~1D! case with equidistant points: The su
cessive application of the first derivative expression prod
the following approximation for the second derivative te
f i9'( f i 121 f i 2222 f i)/4a2, whereas the paraboloid expre
sion produces the better approximationf i9'( f i 111 f i 21

22 f i)/2a2. For the same reason, if in a physical proble
higher spatial derivatives appear, the procedure will con
of fitting higher order polynomials in order to obtain clos
expressions for these higher order derivatives in terms of
values of the function in the neighbor points.

We will consider in this paper only near neighbors in
regular triangular lattice of spacinga in order to construct
the discrete derivatives. We introduce the lattice vectors

r15a~0,1!52r4 ,

r25aSA3

2
,
1

2D 52r5 ,

r35aSA3

2
,2

1

2D 52r6 ~A7!

in such a way that

R25(
i 51

6

r ir i52(
i 51

3

r i ,r i53a21,

R35(
i 51

6

r ir ir i5(
i 51

3

r ir ir i1(
i 54

6

r ir ir i50,

R45(
i 51

6

r ir ir ir i52(
i 51

3

r ir ir ir i . ~A8!

The last fourth order tensor is symmetric in all its indices a
then we only need to considerR1111,R1112,R1122,R1222,R2222.
The final result is
m

s-
.
f

n
va-
e

e

st

e

d

Rmnsg5
3

4
a4@dmndsg1dmsdng1dmgdns#. ~A9!

Inserting~A8!, ~A9! into ~A6! we arrive at

3a2A5F1 ,

3

8
a4@1 tr B12B#5F2 , ~A10!

By taking the trace of the last equation we have

tr B5
2

3a4 tr F2 , ~A11!

and substituting back into~A10!

A5
1

3a2 F1 ,

B5
4

3a4 FF22
1

4
~ tr F2!1G . ~A12!

This is

A5
1

3 (
j 51

6
f j2 f 0

a
r̂ j

0 ,

B5
4

3 (
j 51

6
f j2 f 0

a2 r̂ j
0r̂ j

02
1

3 (
j 51

6
f j2 f 0

a2 1, ~A13!

wherer̂ j
05(r j2r0)/a. The Laplacian is given by the trace o

B, which from ~A11! is

tr B5
2

3 (
j 51

6
f j2 f 0

a2 . ~A14!

The advantage of the formalism presented is that the
rivatives appear in a tensorial formulation from the outs
The gradient of a function is a vector involving the value
the function and the relative position vectors of the neigh
points, whereas the matrix of second derivatives is a sec
order tensor. One can write the expression in compon
form in order to make contact with usual formulations
finite differences algorithms. For example, in a triangu
lattice with lattice vectors given by~A7! the gradient is given
by

A i
x5~]xf ! i5

1

6 S 4
f 12 f 4

2a
1

f 22 f 3

2a
1

f 62 f 5

2a D ,

A i
y5~]yf ! i5

1

2 S f 22 f 6

A3a
1

f 32 f 5

A3a
D , ~A15!

which is a weighted average between the different poss
differences in the appropriate directions.

Finally, in a triangular lattice, the equations~1! have the
following spatial discretization in a particular nodei,
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üi~ t !5F c'
2 2ci

2/3

a2 G(
j 51

6

~uj2ui !1
4~ci

22c'
2 !

3a2 (
j 51

6

~uj2ui !• r̂ j i
0 r̂ j i

0 . ~A16!
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