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Dynamic fracture in a discrete model of a brittle elastic solid
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Dynamic fracture of brittle materials is studied by means of a molecular dynamics simulation of a two-
dimensional(2D) lattice of point particles. By a particular discretization of the continuum equations of elas-
ticity, we derive the Born model in such a way that the model parameters are related to the material properties.
Numerical simulations are performed, which show a branching instability, under Mode | loading, occurring at
a critical crack tip speedThe analysis of the dynamical stress tensor field near the tip shows a qualitative
similarity to Yoffe’s stress field.

PACS numbgs): 62.20.Mk, 46.50+a, 02.70.Ns, 81.40.Np

[. INTRODUCTION simulations appear to be an adequate route to gain some

insight into the complexities of the crack evolution. Essen-

The understanding of how solid materials break apartially three main types of numerical simulations have been

when external loads are applied is a crucial safety issue thd@llowed. From a microscopic point of view one can treat the
has attracted the attention of engineers and material scientidfgtérial as composed by atoms, usually in a crystal, and
for a long time[1]. Quite recently, it has also attracted the StUdy the evolution of the system when imposed loads are

attention of physicists, as the complex spatio-temporal dypresent. Th'sh ap[:k)‘roach hwas pllonetlared by Ashurst Iand
namics of crack propagation has strong resemblances Hoover[11] who showed how molecular dynamics simula-

! e E?ons could be applied to the study of elasticity problems.
other pattern-forming systems and models such as diffusio

- : . : ﬂecently, large scale molecular dynamics simulations on
I|m|tgd aggregation, .d|electr|c breakdovyn, or perco_laﬁ@h two-dimensional2D) triangular lattices of particles interact-
Different mechanisms of fracture arise depending on th

i , . \ §ng with conservative potentials have provided detailed in-
nature of the material. Brittle materials behave as linear elasormation about fracture instabilities, crack branching, and
tic _sollds until a breaking thr_eshold is at_talned. Duc_tlle Ma-gislocation emissiofil2]. Common features of these micro-
terials, on the other hand, display plastic deformations andcopic simulations are the anisotropy of the crystal, the pres-
dislocation motion plays an important role in the dynamicsence of complex atomic rearrangements at the crack tip, and
of fracture. Recent well controlled experiments of crackthe emission of dislocations. These features of plastic crys-
propagation have been conducted in materials such aalline materials can only help us to understand some quali-
PMMA or soda lime glass, which have raised considerablaative features of the experiments conducted on an amor-
interest in brittle materialg3—7]. phous polymeric solid like PMMA.

According to the theory of linear elasticity of brittle ma- A second approach has been the study of finite lattices,
terials, the maximum crack speed should be the Rayleighisually triangular ones, with particular laws of force between
wave speed/ [1]. More precisely, the dynamics of a propa- the points of the lattice and a critical threshold of rupture of
gating crack along a prescribed straight path can be solved #onds[10,13. These lattices can be understood as models of
one assumes that the energy release rate is constant. In tiittle fracture without the effects of dislocations. The advan-
case, the limiting velocity is the Rayleigh wave speed. How-@ge of this approach is that sometimes analytical solutions
ever, the phenomenology of crack propagation in brittle ma&'® available with which we can make comparisons. It is
terials is more complex. Experimental observations inSeen that the lattice has strong effects on the dynamics of the

PMMA show that there are no cracks propagating at spee X?Ctk,ngivin?frif;dtg %hetno:r;enzta Itike rlattli(cs tlrapiE)ing, or the
lower than~0.18Vg or higher than~0.7V [3,6]. More- existence ot for en steady stale crack velociies.

" Finally, a third approach to the numerical study of dy-
over, when the crack speed exceeds a critical value arourwa

0 illat th d i locit mic fracture is that of finite elements. Recently, Xu, and
~1.4Vg, oscillatons on thé measured up VeloCily appearyaedeimari14] have considered this technique with a con-
[3], acoustic emission is importaf#,6], and surface rough-

) ; _ tinuum model for a rather complex isotropic hyperelastic
ness appeafs,6]. Several different mechanisms such as dis-gjig with potential surfaces of decohesion interspersed

sipation[8], wavy motion[9], or crack branching,10] have  throughout the material. Crack branching and the depen-
been proposed to explain this phenomenology. dence of crack velocity with impact velocity are observed
The theoretical analysis of the dynamic fracture presentfeatures of the simulation.
difficulties that have allowed for the achievement of only The picture that emerges from these three approaches is
some partial solutions in very simplified situations. Thethat the spatio temporal dynamics of a fracture model de-
strong nonlinearities of the problem that arise from the coupends on the combination of three main ingredients: the
pling between the linear equations of elasticity and the comforce law, the fracture criterion, and the local geometry of
plex boundary conditions due to creation of new surface athe lattice or the space discretization. However, the influence
the crack propagates make the problem quite intractable, paof fracture criterion and local lattice geometry close to the tip
ticularly when branching occurs. In this context, numericalon the dynamics is not well understood. A reasonable first
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step in this direction is the investigation of the fracture dy-to the tip. Although qualitative agreement is observed, the
namics in a discrete model that would represent an ideallgtrong effects due to the local lattice geometry near the tip do
elastic brittle solid at large length scales. The behavior ohot allow us to draw strong conclusions about the physical
such a model should mimic reasonably well the behavior ofmechanism involved.

a brittle elastic solid, which is linearly elastic and isotropic at  The paper is organized as follows. In Sec. II, we present
large length scales, and discrete at small length scales. the model equations and discuss the implementation of the
In this work we construct a discrete lattice model from thefracture criterion. Section 1ll is devoted to the simulation
continuum equations of elasticity that respects the propertig&Sults related to wave and crack propagation. In Sec. IV we
of isotropy and linear elasticity at large length scales. Owshow the results concerning the spatlal structure of the stress

discretization procedure leads to a finite difference scheme ifi€!d close to the tip making a comparison with the analytical

a triangular lattice that appears in a tensorial form, thus alSUrves obtained in the Yoffe analysis. The discussion and

lowing for an interpretation of the nodes of the mesh aSconclusions are presented in Sec. V. Details of the discreti-

actual particlegrather as mesoscopic portions of material 2ation scheme are given in the Appendix.

which interact with prescribed laws of force. The resulting
force law coincides with the Born modgl5], which has !l DISCRETE MODEL FROM ELASTICITY EQUATIONS

been used extensively in studies of quasielastic and dynamic The jinear equations of elasticity that govern the displace-

f(acture [16]. _Interestingly, our discretizatiqn scheme Pro- ment field u(r,t) in an homogeneous material subject to
vides for precise formulas relating the elastic constants in the .| geformations arfd]

Born model with the transverse and longitudinal wave

sounds speeds of the material. Moreover, the general dis- G(r ) =c2V2u(r,t)+ (c2—c2)V(V - u)(r.t) 1)
cretization scheme can also be implemented for different lat- ' + ’ I Y

tice geometries, as well as next nearest neighbor interactiogyhere the transversg and longitudinaky sound speeds are

or different constitutive equations. _ material properties related to Young’s modulEsind Pois-
The discrete equations of motion have been simulated b¥on's coefficients through

means of a conventional molecular dynamics algorift.
The model allows for the study afynamicfracture, in which E 12
the crgck spged is c!ose to the.RayI(.aigh wave .speeq. This is .= (m)
at variance with studies of quasielastic fracture in which after

bond breaking the system is allowed to relax before a new

bond breakg16]. In this sense, the model presented in this cI=
paper can be understood as an extension of the previous

mo‘?'e' fo_r qua;ielastic fracture in F_{eﬁﬂ.G] to the dynamical ere,p is the mass density of the material. A third speed can
regimes in which the crack speed is comparable to the soungl, yefined in a material, that of the surface waves propagat-

speeds. In the present study we have implemented a detgfy on the free boundaries of the material. For the purposes
ministic fracture criterion based on a given threshold defor-

mation, the usual brittle one in which a single bond breaksgl;otsilri;ttggyé the surface Ralelgh wave speed may be ap
- A . ; y the expressida0]

when a critical deformation is reached. Our aim here is to
make a comparison with analytical results of dynamical frac- Vr~c, (0.874+0.162). (3
ture in linear elasticity as a first check of the model. Of
course, the implementation of a probabilistic fracture crite- We have discretized the elasticity equatighsfollowing
rium as in Refs[16] would take into account interesting a general procedure that allows us to discretize patrtial differ-
effects of disorder of finite temperature. ential equations in an arbitrary latticéncluding random

In this paper, we show that the expected linear elastiones. The procedure is constructed from the point of view of
behavior is obtained for sound waves with wavelengthsan optimization problem; full details are given in the Appen-
larger than seven lattice spacings. We present also numericdix. In this paper, we consider only triangular lattices for
results on crack propagation under Mode | loading. Thewhich the expressions simplify considerably. As shown in
loading level is controlled by cutting an initial notch with an the Appendix, the discrete equations correspondindare
adjustable length. As the fracture criterion, we have taken the

E(l-») |

p(l+v)(1-2v) @

usual brittle one in which a single bond breaks when a criti- . cf—cﬁ/S o

cal deformation is reached. In the simulations the crack u(t)=|——5— > (uj—u)

moves in a straight line and accelerates until the tip reaches a a =

critical velocity V.. The value ofV, appears to be indepen- 4(c2—c?) 6

dent of the loading level. When the crack tip reaches this + i B 2 (u._ui).foi fQi , (4
critical velocity, the crack branches into two macroscopic 3a2 =1 "

running cracks. .

The existence of a critical crack tip velocity for macro- where a is the lattice spacing andﬁ is the underformed
scopic branching suggests that perhaps mechanisms suchlastice vector joining particle$ andi. These equations are
those proposed after Yoffe's stress field solut[d®,1,19  second order ordinary differential equations that can be in-
might be in action. In order to assess whether one of thosterpreted as the equations of motion for a set of particles of
mechanisms is operating in the discrete lattice, we have studmit mass in a lattice, interacting with its nearest neighbors
ied the azimuthal angle dependence of the stress field closeith a linear law of force. The force has two components, a
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first one that represents a linear spring connecting the pag pair of nodes,j of the lattice and consider the displace-
ticles and a second one that is directed to the equilibriunment fieldu; andu; in each node. The length of the bond
positions of the particle&t is a sort of biased linear sprihg  connectioni andj will be

The elastic constants of these two types of springs are given

in terms of the shear and sound speeds. di?=(uj—u;+r)?

It is worth noting that the above discrete model coincides
with the Born model that has been used in several studies of
guasistatic and dynamic crack propagat[d®]. The Born
model is characterized by the following potential energy

~[a+2(u—u) 1)+ (u—u)-(u—u)l. (7

If this length exceeds, for some of the six neighbojsof i,
the bondi,j will break. This isdI>>r2. For small deforma-
tions of the quadratic terms ar negligible and

1 - 1
V=g (am B2 [(u—u) 1% 562 [u—ul%

di~a[1+(uj—u)-ry]>re. (8)
©)
This can be written as
where a, 8 are model constants that are tuned at will. The 0
force on particldé derived from this potential energy is (Uj =) Tji> e, ©)

NV with the critical strainy.=(r.—a)/a.
Fizmz(a_lg)z (uj_ui)'FjOi FJ'OiJFﬁZ (uj—uy), Equations(4) h_ave been si.mulated with a cpnyentional
[ ] ij molecular dynamics code using Verlet's algorithire., a
(6) centered difference in timg17]. This is an explicit method

] o ) ) in the language of finite differences simulations. If a particu-
which coincides with the force in Ed4). We have, there- |5 hond fulfills the conditior(9) then we remove the particle
fore, provided a physical meaning to the model constants o the Verlet's neighbor list of particlieg17]. In this way
«,B in terms of the sound speeds,c|. _ particlei andj are not considered neighbors any more and no

The physics encoded in the linear elasticity equations  |onger interact. We preclude, thus, the possibility of surface
quite simple: any perturbation of the displacement field canecombination. Some trial runs were also performed allow-
be decomposed in terms of sound and shear waves, eaghy for surface recombination but no effects on the dynamics
propagating independently at its own speed. Despite thi§fihe model were observed.
simplicity, the presence of nontrivial boundary conditions oy |atter reference, we present now the discrete expres-
make elasticity problems difficult to solve. The difficulty is gjons for the stress and strain tensors. The strain tensor is
even larger for fracture problems because the boundary coRpefined in the continuum theory as= 3[Vu+VuT]. By us-
ditions are coupled with the dynamics of the fields. In ordering the discretization of first derivatives presented in the Ap-

to specify this coupling it is necessary to formulate afracturependiX, we obtain the following expression for the strain
criterion that states when one fracture surface is created. Thgnsor defined at each node of the mesh

fracture criterion is, from a conceptual point of view, an

additional physical ingredient as important as the constitutive 1 ~0 . =0

equation of the material. Y% 6a 2 (U= Ui +10 (u—uy). (10
Which is the best fracture criterion for “brittleness”? J

This is not an easy question to answer from a continuunThe stress tensow; at the node is given in terms of the

point of view. Different criteria lead to different dynamical strain tensor according {@0]

behavior. A usually chosen criteria is that stating that a sharp

crack tip moves when the stress intensity factor overcomes E v

some material dependent threshold. However, this is an in- Ti=TT V( vit 5,1 7i1>, (11)

complete prescription because it does not specifydihec-

tion of the propagating crack. Several further specificationsand reciprocally

must be made, for example, that the crack will move in the

direction of the maximum circumferential strgds3], or in

the direction of the eigenvector of smaller eigenvalue of the

stress tensdr21]. See Ref[19] for still another formulation

for a fracture criterion. One caveat is in order here: the discretization procedure
On a lattice model it seems natural to use as fracturdhas some merits, for instance, the applicability to problems

criterion the simplest one based on the idea of brittle springsvith different constitutive equations, different lattice geom-

that respond elastically until they break at a critical deforma-etries, and arbitrary number of neighbor interactions. How-

tion. The physical picture in a real material is that two pointsever, it does not guarantee that the particular simulation

representing portions of material that interact elastically willscheme obtained in a given situation is stable. In fact, the

stop interacting if they separate more than the rang#f the  simplest simulation scheme that we present here is unstable

cohesive force. This is a simplistic picture of al the complexfor »v>0.25; this particular value of the Poisson coefficient is

physics of real materials but it provides a precise fracturghe one at which the coefficient of the linear spring force in

criterion. Note that in a lattice it is not necessary to specifyEg. (4) changes sign. This problem is eliminated by recalcu-

the direction that the crack will follow. The mathematical lating the force law considering also next nearest neighbors

formation of this fracture criterion is as follows. Let us take interaction[22].

yi:é[(1+v)o'i—vtr0'i1]. (12)
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FIG. 1. Dispersion relations: The speed of propagation of anotch ofL,=8 is made by cutting transversal bonds at the middle

wave (in units of the Rayleigh wave speeds a function of the of the plate.. The IatFice is stressed by producir)g a .displacement
wavelengthk (in units of the lattice spacing). ¢; for longitudinal AL, of the right vertical boundaryL, andL, are in units of the
waves with the wave numbé&rparallel (@) and perpendicular¢ ) lattice spacing.

to a lattice direction ana, for tra_nsverse waves yvith _the wave Typical plates of 80.000 particles are studied. The plate is
numberk paraliel () and perpendicular®) to a lattice direction. subject to a Mode | deformation by displacing the particles
Solid lines are the continuum values=1.10 andc;=1.79. of the right wall a fixed distancAL, in thex direction. The
1. SIMULATION RESULTS: WAVE AND CRACK plate is left to equilibrate until the stationary stress field cor-
PROPAGATION responding to the given geometry is reached. A damping
force is applied to each particle during this equilibration time
in order to speed up the equilibration and get rid of the trav-
We have selected a Poisson numbersf0.2. We take as eling waves due to the application of the deformation. The
units of space the lattice spacing and as units of velocity thequilibration time is several times that required by sound
Rayleigh wave speedVg=1). This sets the unit of time. waves to travel the sample. In this way, we are starting the
The theoretical shear and longitudinal sound speeds are frogimulation with all particles at rest and, effectively, repro-
Egs.(2), (3), ¢, =1.10, andcy=1.79. Even though the origi- ducing the experimental conditions of quasielastic loading
nal continuum model of linear elasticity) is dispersionless, before fracture initiation.
the discretization always produces dispersion at small length In principle, two different types of numerical simulations
scales. In order to quantify this dispersion, we have inducedan be performed, at a given critical strajp or at a given
shear and longitudinal waves in a 2D lattice with periodicnominal deformatiore, wheree=AL,/L,. In the first case
boundary conditions in both directions and have checked thdtritical strain y. fixed), we have to compute the nominal
the speed of the waves depends on the wave number. Thieformation e, at which fracture occurs. This can be
results are presented in Fig. 1. Four types of waves havachieved easily by means of a previous run in which the

been induced in the plate: |Ongitudinal waves with the Wav%qu”ibrium maximum Strainy in the notched p|ate is ob-

numberk parallel (bullets and perpendiculafdiamond$ to  5iheq for a given deformation. Becausey= ae, wherea
a lattice direction and transverse waves with the wave num-

; ; - fficient of proportionality, we hawe= ey, /y [23].
berk parallel(triangles and perpendiculaiopen circlegto a IS a coe . o . c
lattice direction. Nevertheless, for>7 both longitudinal We note that for critical strain fixed, by increasing the num-

and transverse waves wikhparallel or perpendicular to lat- ber of nodes we are increasing tieeof plates of the same

tice directions coincide perfectly with the corresponding Con_mate:na!. _The reason is that by fixing the critical straip
tinuum values. one is fixing a length scale. .

We observe that for wavelengths smaller that7 the The second kind of experiment that can be performed is at

longitudinal and transversal speeds of sound are smaller thgh 3'Ve" nominal deformatiow. In this case, we have to

the corresponding continuum values. In addition, we observ@d]USt the critical strain by computing the deformation of the

that for these small wavelengths the lattice is not isotropic. Amost stretched bond and the next most stretched bond. By

transverse wave moves faster in the directions of the |attic§elect|ng the average value petyveen these two Qeformanons
vectors than in the directions perpendicular to the lattice vecl'® make sure that at the bggmnlng of the Qynam|cal run only
tors. This anisotropy effect is not so pronounced for Iongitu—the.mOSt stretched bond W'.” brea_k, thus triggering the propa-
dinal waves. gation of the cra_ck. The S|mulat|o_ns that will _be prese_nted
are performed with this second kind of experiment, with a
given nominal deformation o€=0.01. Note that at fixed
nominal deformation, by increasing the number of nodes in
We have studied Mode | fracture of finite 2D rectangularthe plate we are increasing thmesolutionof the plate. The
plates of dimensiond., XL, that contain an initial sharp idea is that if plates of equal geometry but different number
notch of lengthL,,. The notch is located in the middle of the of nodes all break at the same nominal deformation they will
plate and is made by cutting the transversal bonds on theorrespond to different representations of the same plate of

central column starting from the upper boundésge Fig. 2 the same material.

A. Dispersion relations and isotropy

B. Crack propagation
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FIG. 3. Record of all broken bonds in a plate. Both axes are ings a function of timein units ofa/vg). The strong oscillations are
units of the lattice spacing. Dotted straight lines are two lattice duye to the branching.

directions to guide the ey@he third lattice direction is vertical

Vertical slashed line is the initial notch with=60. L, andLy are  —10; from then on the crack propagation is still straight and
in units of the lattice spacing. the tip velocity grows in a rather linear way urttit 25 when
branching starts. Before branching occurs, the acceleration of

We have conducted a series of simulations in which thgne crack tip decreases as the notch length decreases, i.e., as
effect of the notch length on the dynamics of crack propagas,e stress level is higher.

tion is studied systematically. The notch length determines .o branching has started very strong tip velocity fluc-

the level of stress of the landscape on which the crack propgyations are observed. These wild fluctuations are caused by
gates and it is usually the way in which this effect is inves-he yranching process in which the most advanced broken
tigated experimentalljalso the shape of the notch is relevant ), 4 4, belong to different branches at different times. For
experimentally. Plates with long notches require smaller jysiance. tip velocities higher than unity appearing in Fig. 4
levels of deformation to break. In Refl24] we studied the . resnond to one branch surpassing another, with a small
effect of notch length on crack fracture of an anisotropiCijme interval in between the breaking of the most advanced
model and a full discussion of the dependence of the maxig,n4s of both branches.
mum stress in the plate as a function of notch length was  the main observation here is that branching occurs at the
presented. _ _ . same value of tip velocity irrespective of notch length, i.e.,
_In Fig. 3 we show a plate in which the lattice is oriented here js a well defined critical tip speed for branching to
with a lattice direction along the vertical. In this case annen within the simulation error. This is shown in Fig. 5
=0.25 and the initial notch has a lengthlq=60. The platé \ynere the velocity of the crack tip at the branching point is
is let to equilibrate without breaking until a static state ISrepresented as a function of the notch length. For all cases

reached. At that point the breaking strain thresheldis  pranching occurs when the crack tip reaches the critical ve-
adjusted just below the deformation of the most stretcheqiocity V,=0.71+0.01.

bond. A crack is initiated and it propagates in a straight line Recently, it has been proposed that in experiments of

along the vertical lattice direction. The crack branches at §,44e | fracture in PMMA[7], the branching instability is
given time in two cracks and the subsequent motion is ir- ’

regular with several attempted branching. We plot in Fig. 3 a 0.8
record of all the broken bonds of the plate until a given time.
It should be noted that the main branches do not follow the

lattice directions in the major part of their development. 0.75 | —
In order to study the velocity of the crack tip, we define

the position of the tip as the middlepoint of the most ad- % , % ' % O G N

vanced breaking bond. The tip velocity is calculated by di- Vg 0.7 | {> {> {> <}—

viding the y coordinate difference by the time interval in

between the last two most advanced broken bonds. This defi-

nition is the closest to the experimental measurement of the 0.65
crack tip velocity[3,6], which basically measures the resis-
tance of the metallic strip in between the most advanced
crack tip and the free border of the breaking plate. The time
history of the velocity for the crack tip in Fig. 3 is shown in
Fig. 4. The crack starts moving at a finite velocity Q.6),
which is different from zero due to the essential discrete way F|G. 5. The velocity of the crackn units of the Rayleigh wave
of computing the velocity. At short times<{10) the crack speed at the moment of branching for each notch lengtrunits of
propagates in a straight line and small oscillations of the tithe lattice spacing). The dotted line is the average valig
velocity occur. These velocity oscillations disappeartat =0.71.

06 b_L— 1 1 11 1
30 40 50 60 70 80 90 100 110

n
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tanfy= agytané,

FIG. 6. Polar coordinates with respect to the crack tip. Solid
vertical line is the crack.

triggered by the reflection against the boundaries of sound tanf.= a.tand
waves generated during the cracking process. This is not so s oUE '
in the present simulations, because here the crack tip speed is D =4agag—(1+ad)?. (15)

higher than in the referred experiments and therefore branch-
ing occurs always at a time smaller than that required by thefhe Rayleigh wave speed is the nonzero real rodD @f).
longitudinal waves to travel back and forth to the nearest The stress in polar coordinates is given by
boundary.
01 = 04 COS 0+ 0y SN 20+ 7y SINP 6,
IV. SIMULATION RESULTS: STRUCTURE .
OF THE STRESS FIELD 0r9=(0yy= 0x)SiN 20+ 0y, COS 2,

The existence of a critical branching velocity and its par- T g9= Tyy SIPO— oxySiN20+ oy, cogh. (16)
ticular value in a model that represents well a linear elastic
solid at large length scales calls for a comparison with the These expressions allow us also to compute the corre-
stress field derived by Yoffgl8]. In any case the compari- sponding strain fields(r,6,v,t) andT'(6,v) through Eq.
son should be taken with some care because Yoffe’s solutiofiL2). The circumferential tensile stress, (also called hoop
is valid asymptotically close to the tip and, due to the dis-Stres$ has an interesting behavior as a function of the veloc-
crete nature of the model, the isotropy and linear elasticity ofty of the crack. For crack speeds less than about 60 maxi-
the continuum equations are not preserved at small lengtium value ofo,, appears at=0. As speed increases, the
scales. We will first succinctly review the main results for hoop stress develops a maximum in a direction inclined at an
the asymptotic fields near a moving crack tip in Mode |angle from the direction of crack growth different from zero.
loading. Yoffe suggested that this inertia induced modification of the
local singular stress field could make the crack bifurcate into
A. Yoffe's stress field several branched cracks. In Fig. 7 we plot the angles at
_ . which a4, and y,, have their maxima as a function of the
The results given by Yoffe correspond to a crack movingye|ocity of the crack. The angles at which the maxima appear
at constant velocity through an infinite plate. Even thoughcrease monotonically from zero to a value beyond 60° as
the original derivation of Yoffe was made considering cracksihe velocity increases provided that some critical value of the
moving at constant speed, it is possible to prove that for §ejocity are exceeded. These critical values for the hoop
linear crack at arbitrary speed, the stress field asymptotically ain and stress are 0.659 and 0.688, respectively. Moreover,
near the tip of the crack has the following forwsing polar  apove the critical valuedi,,q, behaves as the square root of
coordinates as in Fig.)§1]: the relative difference between the tip speed and the corre-
K.(t) sponding critical velocity.
O'(r,H,v,t)Zl—E'(H,U). (13
v2mr B. Simulation stress field: static crack

We will first consider the structure of the static stress field
prior to crack evolution in a plate with a long initial notch.

Keeping in mind that Yoffe’'s expressions are asymptotic
fields valid close to the crack tip we need to know the stress

Here, the dimensionless angular functidiig in Cartesian
coordinates, with th& axis in the direction of propagation of
the crack, are given bjl]

1 cosk o cosl tensor obtained from the simulations on a circle of a small
P — (1+a2)(1+2a§—a2)—2d—4a5ad—25 . radius centered at the crack tip. Information on the radius of
D s * yg Vys the circle can be gained by looking for the expected’
behavior for values ob close to zero. In Fig. 8 we show the
2aq(1+a?) [sint6y sin o, depen.dence obr g onr qalculated at Fhe lattice nodes lo-
!(y: - , (14)  cated in the two vertical lines at both sides ahead of the crack
D \/% \/ﬁ tip.
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FIG. 9. Plot of \/Faw, (normalized with its value at the angle

FIG. 7. Angle (in degrees at which X ,, (thin line) and T 4 closest tod=0) against the anglé (in degreesfor a static crack.
(thick line) have their maxima, as a function of the crack velocity Solid line corresponds to the theoretical expression and diamonds
(in units of the Rayleigh wave speedrhe Poisson coefficient is are the simulation results.

=0.25. . .
g expressiong14) and (16). The values ofr,, obtained from

- . . the simulations have been multiplied kY, and divided by
It can be seen that within a distance to the tip of thregyq \aue ath=0, in order to compare with the theoretical

lattice spacings th_e stresses obtalﬂgzd in the simulation agre&pressions fob, ,, computed at the same lattice nodes. All
re_asonably well with the exp_ected dependence. Beyond ine following data correspond to a plate with=173.2,
this distance to the crack tip, the stresses decay somewhat—2399.5 and notch length,,= 195, which is allowed to
slower thatr ~*% Therefore, it seems reasonable to take aelax without breaking until a static configuration is reached.
circle of radius three lattice spacings in order to study theThis notch length ensures that the crack tip is not affected by
structure of the stress field close to the tip. Unfortunatelythe upper and lower boundaries. The stress field around the
because of the discrete nature of the system, the number @p will be, therefore, similar to the infinite strip cag25]. In
lattice nodes within that circle of radil®=3 is small. Fig. 9 we plotyr oy, against the anglé for this static con-
In the following we will represent the azimuthal depen- figuration. Diamonds correspond to the simulation points and
dence of the stress field obtained in the simulations at thosgolid line is the Yoffe's field forv =0.
lattice nodes that are located within a circleR 3, and the A nice overall agreement between the simulation and the-
corresponding values at the same points obtained through tiegetical results is observed. However, there are some slight
differences that can be attributed to several causes. First, one
observes that the simulation results are distributed in a nar-
LAY LA rower curve aroundd=0 than the theoretical ones. This
might be due to the finite dimensions of the plate; from the
o ] map of isolines of stres;ormalized with the strip widthin
<& » [25] one concludes that the angular distribution of stresses is
O more localized around=0 for a strip of finite width than
+ + S for a “strip” of infinite width. Second, the nonsmooth ap-
> pearance of the pointsee, for instance, al=—60°) is a
- + & systematic lattice effect that will be discussed below. Finally,
o9 & the crack tip location is subject to certain ambiguity. The
I most natural way to define the location of the crack tip ap-
pears to be the middle point of the breaking bond at the time
+_|_ the bond breaks; but positions slightly more advanced or
++ retarded might be arguable too. However, we have checked
that considering these more advanced or retarded positions
for the crack tip merely changes the azimuthal dependence
L L shown in Fig. 9 in a geometrical way, i.e., the azimuthal
1 10 angles corresponding to the different lattice nodes change by
r changing the position of the origin of the polar coordinate
system located at the crack tip.

0.5

FIG. 8. Dependence of,, on r for the lattice nodes in the
columns at right and left from the straight propagating crack. Dia-
monds correspond to Yoffe's stress field and crosses to simulation
results. The simulation results here have been shifted by a multipli- We have analyzed the stress field of moving cracks at
cative factor. times long enough that the initial oscillations have decayed

C. Simulation stress field: moving crack
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FIG. 10. Plot of the hoop stress,, (normalized with the value _ _
closest tod=0) against angl# (in degreesfrom the direction of FIG. 11. Plot of the hoop stress;, (normalized with the value
crack growth at timega) t=19.17 andb) t=35.22. solid line is the ~ closest tof=0) against angle (in degreesfrom the direction of

asymptotic field and diamonds represent the simulation results. crack growth at time¢a) t=19.93 and(b) t=35.93. Solid line is
the asymptotic field and diamonds represent the simulation results.

and the crack is moving with low acceleration, up to times
immediately before branching occurs. In the following the
stress fields are represented at times coinciding with th

breaking of a bond. o . - .
First of all, let us poin_t out that the e_ffects of the lattice 2/'1(2;? gigklsnpg;a;;f ?r?l ak;eegb;eg\;eci tg?ﬁ eI:I?/\}i(tiD?ens% g (I:gt o
asymmetry close to the tip are stronger in the case of a mov-_, [the same applies to Figs. ) and 11b)]. This com-
ing crack. In Figs. 10 and 11 the hoop stress is shown aj,ison clearly shows that the lattice has a strong influence
different times(and, therefore, at different crack tip veloci- o, the stress field near the crack tip and that this influence is
ties) before branching, plotted against angleas well as the systematic.
corresponding theoretical values for the same tip velocities. Figures 10b) and 11b), which correspond to tip speed
For this particular plate and notch length, the time at whichyajues higher than the critical values of Fig. 7, show that the
the crack branches is 35.93. theoretical hoop stress has already a maximunmyA0.
Figures 10a) and 1Q@b) correspond to times=19.17 and  However, in the simulation results, the strong lattice influ-
t=35.22, respectively, at both of which the correspondingence forbids an interpretation of the branching as caused by
breaking bond has an inclination &= 60°; the respective the existence of maxima in the hoop stresg#10. Actually,
tip speeds are 0.66 and 0.70. Conversely, Figga)land it can be seen that there are two nodtee nearest to the
11(b) correspond to time$=19.93 andt=235.93, respec- crack tip at angles 60° and-30° at which the value of 4
tively, at both of which the corresponding breaking bond hags larger than the value at angles close to 0°. The appearance
an inclination ofd= —60°; the respective tip speeds are 0.67of these maxima at nodes close to the tip might be due to the
and 0.71. method used for computing the stress field through Ed3,

A detailed comparison between Figs. 10 and 11 shows
hat when the breaking bonds have the same orientation, the
oop stresses have very similar structures at different times.
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FIG. 12. Theoretical(solid line) and simulation resultgdia- FIG. 13. Theoretical(solid line) and simulation resultgdia-

monds for the ratio between the hoop stress for tinhes19.17 and  monds for the ratio between the hoop stress for times19.93 and
t=235.22 corresponding to Figs. () and 1@b) (angle ¢ in de- t=35.93 corresponding to Figs. (Bl and 11b) (angle # in de-
grees. grees.

(11), which is, essentially, the finite difference calculation. acterized by the two speeds of sound of the elastic material.
Very close to the crack tip, where there are very strong varia- We have studied the elastic properties of the model by
tions of the displacement field, this finite difference calcula-Means of the sound propagation. In the discrete model, the
tion might give a poor approximation to the stress field. isotropy _of tr_]e continuum equations and the proper values of
A surprising fact is that the effects of the lattice structurethe longitudinal and transverse wave speeds are recovered
appear to be mainly multiplicative, and so they may pefor pertu.rbatlons with Wavelengths typlcqlly above an order
strongly reduced by dividing the stress fields at differentof magnitude larger than the lattice spacing.
times provided that the orientation of the breaking bond is The fracture criterion we have selected is extremely local
the same. In Fig. 12 we show the ratio between the stres& Single bond breaks at a tinand this, as far as compari-
fields in Figs. 10a) and 1@b). The solid line is the quotient SONS with continuum theory are concerned, might be too sim-
between the analytical results, whereas the diamonds corr@listic. The idea is that local criteria, in which a single bond
spond to the ratio between the simulation results; angles oufréaks at a time, must necessarily be subject to the local
side the range £100,100) have not been represented; be_top_ology of the Iat_t|ce. If the lattice is sought as a dlscre_tl-
cause of the stress values in the denominator being smalleFation of the continuum, one would expect that the lattice
large values of the quotient are obtained. We observe thaPacing should be much smaller than any other relevant
this procedure practically eliminates the systematic latticd®ndth scale in the systefat least by a factor of 101f the
effects and also shows a striking coincidence between theo§/MPIistic view of “grains” that break apart is taken, it is
and simulations. The same procedure has been carried out #PParent that in an event of separation of grains, many lattice

Fig. 13 where the quotient between data in Figgaland points would break at a time. In any case, it seems interesting
11(b) is presented. to study new models with nonlocal criteria of fracture in

These results suggest that in spite of the strong latticé/hich the decision to break a bond is taken from the dynami-
effects that occur near the crack tip, the azimuthal deper@! State of many neighboring particles and not only from the
dence of the hoop stress that is observed in the simulatiorEPUPle that forms the bond.

captures many of the features of Yoffe’s stress field. Regarding the phenomenology of crack propagation, we
have observed that fractures propagating in this model do not

necessarily follow the lattice directions. There are, however,
some effects of the lattice in the propagation of the cracks.
Our aim in this paper has been to define from a numericaBometimes a dynamical trapping forces the crack to follow
point of view a model that represents brittle linear elasticity.prescribed lattice directions. The origin of this lattice trap-
The approach we follow is a discretization of the continuumping effect might be attributed to the local criteria of fracture
equations in a way that the nodes of the grid can be interthat we have selected.
preted as actual “particles” or portions of material. The re- We have seen that all cracks in this model of brittle linear
sulting algorithm can be interpreted then as a molecular dyelasticity accelerate and display branching when the crack tip
namics algorithm instead of a finite difference algorithm inspeed exceeds a critical velocity ©f =0.7Vy for the Pois-
much the same spirit as smoothed particle applied mechanis®n ratio here considered. This critical value does not depend
[26]. Actually, the model obtained is essentially the Bornon the notch length and is close to the one obtained from
model, with the bonus that the constants appearing in th&offe’s hoop stres§18,1]. After the cracks branch, large
model are explicitly related to the material properties charfluctuations of the crack speed appear. These fluctuations are

V. DISCUSSION AND CONCLUSIONS
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very similar to the ones observed in experiments where the Let f(r) be any scalar field ifR® and consider a sample
tip velocity is monitored by means of the resistance of aof M points distributed arbitrarily in the vicinity of a given
conductive thin film deposited on one of the faces of the tespoint r, with positionsr;. The value of the scalar field at
plate. According to our simulations, these fluctuations mighthose points is denoted biy=1f(r;). The question we an-
be interpreted as an artifact of the measurement method thatver in this Appendix is, from our knowledge ofandf;,
does not distinguish between simultaneously runningvhich is the best estimate for the first and second derivatives
branches of the same crack. of f at the pointry? This is a problem of optimization and
Even though a direct comparison between the theoreticadssentially the solution consists of finding the best parabo-
stress field and the simulation results is difficult due to strondoid that fits the points and contains the paigt fo in R 1.
lattice effects, we have shown that these effects are to a largehe equation of this paraboloid is
extent systematic. Its basic origin is due to anisotropy in-
duced by the particular orientation of the breaking bond. In 1
this way, we observe in the simulations that the stress field P(r)=fo+tA-(r—ro)+5Bi(r=ro)(r=ro). (A1)
near the tip of the crack “alternates” between two almost

mirror symmetric configurations as the crack snaps bonds of Taylor expansion off(r) aroundr, shows thatA is an
different orientations as it proceeds. It is remarkable tha 0

when this effect is removed from the representation of th 'épproxmatlon for the gradient éfatro andB is an approxi-

¢ fields by taki it . © diff hp nation for the matrix of second derivatives. We construct
stress fields by taking appropriate ratios at different timesy o "4 o optimization function

the similarity with the theoretical results is much increased.
It is tempting to speculate that this alternating configuration

of the breaking bonds might introduce a component of Mode #(A,B)
Il loading close to the tip. Work to analyze this possibility in j
connection with the branching explanation give2d] is in
progress.

Even though from a qualitative point of view crack
branching due to the Yoffe instability is an explanation for
the observed low crack speed, it still does not exptapian-
titatively the experimental results. In fact, experiments show
that there exist a critical crack speed above which the crack
evolution is unstablét oscillates, emits sound, and it micro- By minimizing ¢ with respect toA,B we will obtain the
branches The typical value for this critical crack speed is paraboloid that best fits the points, f
significantly lower than that predicted by the Yoffe instabil-
ity. Therefore, it is still an open question as to what are the d 1
essential ingredients that a model of brittle fracture should 0= IA [—Fﬁ ra-A+ EraiB},
have in order to reproduce the experimental results.

Summarizing, we have investigated in this paper a simple
model of linear elasticity with a local threshold criterion of 0= @:
fracture. It might be necessary to resort to more complex JB
constitutive equations that can equally be treated with the
general discretization method proposed in this paper. Itvhere we have defined
seems also necessary to consider new criteria of fracture,
which model in a more realistic way the complex physic that
occur in the crack tip. From a computational point of view, Fi=2 (fi—fo)(rj—ro),
nonlocal criteria are needed if the effects of the lattice are J
required to be negligible.

M=

[P(rp—f]?

fo_fj+A'(rj_r0)

1 2
+§B:(rj—r0)(rj—ro)) . (A2)

1
—Fy+r3-A+ Eu:B}, (A3)

M

M
Fo=2 (fj—fo)(r;—To),(rj—To), (A%)
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APPENDIX: DISCRETIZATION OF CONTINUUM

EQUATIONS M
In this Appendix we formulate the problem of discretizing Re= EJ: (rj=ro)(r;=ro)(rj=ro),
the equations of elasticity on an arbitrary mesh as a problem
of optimization. The method presented in this Appendix is, M
however, not restricted to the elasticity equations and can be R4EE (rj=ro)(r;=To)(r;—Ty), (A5)

applied to any set of partial differential equations.
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which contain the topological information. The subindices 3 o
on theF’s and R's in (A4), (A5) denote the order of the REVTY=2a[617 677+ 64767+ 647 5"7]. (R9)
tensorial quantity. The condition of minimum provides

Inserting(A8), (A9) into (A6) we arrive at

1
R2'A+§R3.B=F1, 3aZA:F1,
1 3 4
Rs-A+ 5Ry:B=F,. (AB) ga[1rB+2B]=F,, (A10)

This is a system of linear equations for the- D(D+1)/2 By taking the trace of the last equation we have
unknownsA,B (note thatB is symmetrig.

If, instead of firstand second derivatives, only first de-
rivatives were required, we would have started the problem
by fitting the bestplane (instead of parabolojd This corre-
sponds to the above formulas wiB=0. One could think and substituting back intGA10)
that, then, second derivatives could be obtained by succes-

2
trB= Q trk,, (All)

sive application of the formulas for the first derivatives. A 1 E
However, this has the drawback of bringing the neighbors of 3a2 1’

the neighbors of a given point into the expressions. This in
general produces less accurate expressions for the deriva-
tives. One can get a glimpse of this point by considering the B= 33
one-dimensionallD) case with equidistant points: The suc-
cessive application of the first derivative expression producepis is
the following approximation for the second derivative term
fl'~(fi o+ f,_,—2f)/4a® whereas the paraboloid expres- 18
sion produces the better approximatidfi~(f;,+f;_1 A=§ E
—2f,)/2a%. For the same reason, if in a physical problem
higher spatial derivatives appear, the procedure will consist 6
of fitting higher order polynomials in order to obtain closed B ‘_1 D fj_fofofo— E D
expressions for these higher order derivatives in terms of the 3 2 I3
values of the function in the neighbor points.

We will consider in this paper only near neighbors in awheref‘-):(r-—ro)/a. The Laplacian is given by the trace of
regular triangular lattice of spacing in order to construct B whiéh froJm (A11) is
the discrete derivatives. We introduce the lattice vectors '

F— %(tr Fz)l} . (A12)

f_fo

ri=a(0,1)=—ry, trB=

E

OOII\)

(A14)

NN
rh=a E'E =—1TIg,

in such a way that

3

6
=> =22, r,,r,=3a,
=1 i

w

6 6
:Z iriri= 2 |f|ri+i=§;ririfi=0

6 3
R4:21 riririri=221 rirrir; .
1= 1=

(A7)

(A8)

The advantage of the formalism presented is that the de-
rivatives appear in a tensorial formulation from the outset.
The gradient of a function is a vector involving the value of
the function and the relative position vectors of the neighbor
points, whereas the matrix of second derivatives is a second
order tensor. One can write the expression in component
form in order to make contact with usual formulations of
finite differences algorithms. For example, in a triangular
lattice with lattice vectors given b§A7) the gradient is given

by

1) f,—f, fo—fs fo—fo
A':(axf)‘zg(‘l 2a | 2a | 2a

fo—fe fs_fs) A5

B | \a

which is a weighted average between the different possible

Al=(a,F)i= (

The last fourth order tensor is symmetric in all its indices anddifferences in the appropriate directions.
then we only need to consid@?*!!} R1112 R1122 1222 R2222

The final result is

Finally, in a triangular lattice, the equatiofk) have the
following spatial discretization in a particular node
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. c2—c?3| 8 4(c?—c?) 8 =
u(t)= % > (uj—ui)+(”—2LZ (uj—up)-r5rs . (A16)
a =1 3a =1
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